Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d:y=x.\) Tìm ảnh của d qua phép quay tâm O góc \({{90}^{0}}\).
Giải chi tiết:
Phép quay tâm O góc quay 900biến điểm M(x;y) thành điểm M’(x’;y’) thỏa mãn hệ phương trình:
\(\left\{ \begin{array}{l}x' = x\cos 90 - y\sin 90 = - y\\y' = x\sin 90 + y\cos 90 = x\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = y'\\y = - x'\end{array} \right. \Rightarrow M\left( {y'; - x'} \right)\)
\(M\) thuộc đường thẳng \(y=x\Rightarrow -x'=y'\Leftrightarrow y'=-x'\). Vậy M’ thuộc đường thẳng \(y=-x\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.