[LỜI GIẢI] Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a. Các cạnh bên của hình chóp đều bằng a - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a. Các cạnh bên của hình chóp đều bằng a

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a. Các cạnh bên của hình chóp đều bằng a

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a. Các cạnh bên của hình chóp đều bằng \(a\sqrt{2}\). Tính góc giữa hai đường thẳng AB và SC.


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Ta có: AB // CD \(\Rightarrow \widehat{\left( AB;SC \right)}=\widehat{\left( CD;SC \right)}=\widehat{SCD}\)

Xét tam giác SCD có:

\(S{{C}^{2}}+S{{D}^{2}}=2{{a}^{2}}+2{{a}^{2}}=4{{a}^{2}}=C{{D}^{2}}\Rightarrow \Delta SCD\) vuông tại S, lại có SC = SD (gt) \(\Rightarrow \Delta SCD\) vuông cân tại S \(\Rightarrow \widehat{SCD}={{45}^{0}}.\)

Chọn D.

Ý kiến của bạn