Một đường thẳng cắt mặt cầu \(O\) tại hai điểm \(A,B\) sao cho tam giác \(OAB\) vuông cân tại \(O\) và \(AB = a\sqrt 2 \) . Thể tích khối cầu là:
Giải chi tiết:
Vì tam giác \(OAB\) vuông cân tại \(O\) nên \(OA = OB = \frac{{AB}}{{\sqrt 2 }} = a \Rightarrow {V_{cau}} = \frac{4}{3}\pi {a^3}\)
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.