[LỜI GIẢI] Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB=2 căn 3 và AA'=2. Gọi MNP lần lượt là trung điểm của - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB=2 căn 3 và AA'=2. Gọi MNP lần lượt là trung điểm của

Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB=2 căn 3 và AA'=2. Gọi MNP lần lượt là trung điểm của

Câu hỏi

Nhận biết

Cho hình lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có \(AB=2\sqrt{3}\) và \(A{A}'=2.\) Gọi \(M,\,\,N,\,\,P\) lần lượt là trung điểm của các cạnh \({A}'{B}',\,\,{A}'{C}'\) và \(BC.\) Côsin của góc tạo bởi hai mặt phẳng \(\left( A{B}'{C}' \right)\) và \(\left( MNP \right)\) bằng


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Dễ thấy \(\widehat{\left( \left( A{B}'{C}' \right);\left( MNP \right) \right)}=\widehat{\left( \left( A{B}'{C}' \right);\left( MNCB \right) \right)}\)

\(\begin{array}{l} = {180^0} - \widehat {\left( {\left( {AB'C'} \right);\left( {A'B'C'} \right)} \right)} - \widehat {\left( {\left( {MNBC} \right);\left( {A'B'C'} \right)} \right)}\\ = {180^0} - \widehat {\left( {\left( {A'BC} \right);\left( {ABC} \right)} \right)} - \widehat {\left( {\left( {MNBC} \right);\left( {ABC} \right)} \right)}.\end{array}\)

Ta có \(\widehat{\left( \left( {A}'BC \right);\left( ABC \right) \right)}=\widehat{\left( {A}'P;AP \right)}=\widehat{{A}'PA}=\arctan \frac{2}{3}.\)

Và \(\widehat{\left( \left( MNBC \right);\left( ABC \right) \right)}=\widehat{\left( SP;AP \right)}=\widehat{SPA}=\arctan \frac{4}{3},\) với \(S\) là điểm đối xứng với \(A\) qua \({A}',\) thì \(SA=2\,A{A}'=4.\)

Suy ra \(\cos \widehat{\left( A{B}'{C}' \right);\left( MNP \right)}=\left| \cos \left( {{180}^{0}}-\arctan \frac{2}{3}-\arctan \frac{4}{3} \right) \right|=\frac{\sqrt{13}}{65}.\)

Chọn B.

Ý kiến của bạn