[LỜI GIẢI]  Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y=x^2-4x+4 trục tung và trục hoành. Xác định k để - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

 Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y=x^2-4x+4 trục tung và trục hoành. Xác định k để

 Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y=x^2-4x+4 trục tung và trục hoành. Xác định k để

Câu hỏi

Nhận biết

Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng (d) đi qua điểm \(A\left( 0;4 \right)\) và có hệ số góc k chia (H) thành hai phần có diện tích bằng nhau.


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Xét phương trình hoành độ giao điểm: \({{x}^{2}}-4x+4=0\Leftrightarrow x=2\)

\(\Rightarrow \) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y={{x}^{2}}-4x+4\), trục tung và trục hoành là \(S=\int\limits_{0}^{2}{\left| {{x}^{2}}-4x+4 \right|dx}=\frac{8}{3}\)

Đường thẳng (d) đi qua A(0;4) và có hệ số góc là k chia hình (H) thành hai phần:

Phần 1: Tam giác vuông OAB có diện tích S1.

Phần 2: Hình phẳng giới hạn bởi đường thẳng (d), đồ thị hàm số \(y={{x}^{2}}-4x+4\) và trục hoành.

Đường thẳng (d) có phương trình \(y=kx+4\) cắt trục hoành tại điểm \(B\left( -\frac{4}{k};0 \right)\), với \({{x}_{B}}\in \left[ 0;2 \right]\Rightarrow k\le -2\) 

Đường thẳng (d) chia (H) thành hai phần có diện tích bằng nhau\(\Rightarrow {{S}_{1}}=\frac{1}{2}OA.OB=\frac{1}{2}.4.\left| \frac{-4}{k} \right|=\frac{4}{3}\)

\(\Rightarrow \left| \frac{1}{k} \right|=\frac{1}{6}\Leftrightarrow k=\pm 6\Rightarrow k=-6\)

Chọn B.

Ý kiến của bạn