Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB đều, góc giữa (SCD) và (ABCD) bằng \({{60}^{0}}\). Gọi M là trung điểm của cạnh AB. Biết hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính theo a khoảng cách giữa hai đường thẳng SM và AC.
Giải chi tiết:

Ta có: \(S{{M}^{2}}={{\left( 2a \right)}^{2}}-{{a}^{2}}=3{{a}^{2}}\)
\(S{{M}^{2}}=M{{N}^{2}}+S{{N}^{2}}-2MN.SN\cos {{60}^{0}}\)
\(\Leftrightarrow 3{{a}^{2}}={{\left( 2a \right)}^{2}}+S{{N}^{2}}-2.2a.SN.\frac{1}{2}\Leftrightarrow S{{N}^{2}}-2aSN+{{a}^{2}}=0\)
\(\Leftrightarrow {{\left( SN-a \right)}^{2}}=0\Leftrightarrow SN=a\)
\(SH=SN\sin {{60}^{0}}=\frac{a\sqrt{3}}{2};MP=\sqrt{{{a}^{2}}+{{a}^{2}}}=a\sqrt{2}\)
\(HN=SN\cos {{60}^{0}}=\frac{a}{2}\Rightarrow HO=a-\frac{a}{2}=\frac{a}{2}\)
Ta có: \(\frac{OM}{HM}=\frac{a}{\frac{3a}{2}}=\frac{2}{3}\) nên \(d\left( O;\left( SMP \right) \right)=\frac{2}{3}d\left( H;\left( SMP \right) \right)\)
\(PN=\sqrt{{{a}^{2}}+{{a}^{2}}}=a\sqrt{2}.\) Mà \(\frac{KH}{PN}=\frac{MH}{MN}\)
\(\Rightarrow KH=\frac{MH}{MN}.PN=\frac{\frac{3a}{2}}{2a}a\sqrt{2}=\frac{3a\sqrt{2}}{4}\)
\(\frac{1}{I{{H}^{2}}}=\frac{1}{H{{S}^{2}}}+\frac{1}{H{{K}^{2}}}=\frac{1}{{{\left( \frac{a\sqrt{3}}{2} \right)}^{2}}}+\frac{1}{{{\left( \frac{3a\sqrt{2}}{4} \right)}^{2}}}\Rightarrow IH=\frac{3a\sqrt{5}}{10}\)
\(\Rightarrow d\left( O;\left( SMP \right) \right)=\frac{2}{3}d\left( H;\left( SMP \right) \right)=\frac{2}{3}IH=\frac{2}{3}.\frac{3a\sqrt{5}}{10}=\frac{a\sqrt{5}}{5}.\)
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.