Cho hàm số \(y=\cos 3x.\sin 2x\). Tính \(y'\left( \frac{\pi }{3} \right)\) bằng:
Giải chi tiết:
\(\begin{array}{l}y' = \left( {\cos 3x} \right)'.\sin 2x + \cos 3x\left( {\sin 2x} \right)' = - \sin 3x.\left( {3x} \right)'.\sin 2x + \cos 3x.\cos 2x\left( {2x} \right)'\\ = - 3\sin 3x\sin 2x + 2\cos 3x\cos 2x\\ \Rightarrow y'\left( {\frac{\pi }{3}} \right) = - 3\sin \pi .\sin \frac{{2\pi }}{3} + 2\cos \pi .\cos \frac{{2\pi }}{3} = - 2.\left( { - \frac{1}{2}} \right) = 1\end{array}\)
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.