Tìm nguyên hàm F(x) của hàm số \(f\left( x \right)={{e}^{2x}}\), biết \(F\left( 0 \right)=1\)
Giải chi tiết:
\(\begin{align} & F\left( x \right)=\int{f\left( x \right)dx}=\int{{{e}^{2x}}dx}=\frac{{{e}^{2x}}}{2}+C \\ & F\left( 0 \right)=\frac{1}{2}+C=1\Leftrightarrow C=\frac{1}{2} \\ & \Rightarrow F\left( x \right)=\frac{{{e}^{2x}}}{2}+\frac{1}{2} \\ \end{align}\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.