Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng SA và BC.
Giải chi tiết:

Gọi H là trung điểm của BC khi đó \(SH\bot BC\).
Mặt khác \(\left( SBC \right)\bot \left( ABC \right)\) do đó \(SH\bot \left( ABC \right)\).
Ta có \(SH=\frac{a\sqrt{3}}{2}\) và \(AB=AC=\frac{a}{\sqrt{2}};AH=\frac{BC}{2}=\frac{a}{2}\).
Do \(\left\{ \begin{array}{l}BC \bot AH\\BC \bot SH\end{array} \right. \Rightarrow BC \bot \left( {SHA} \right)\). Dựng \(HK\bot SA\) khi đó \(HK\) là đoạn vuông góc chung của \(BC\) và \(SA\).
Lại có \(HK=\frac{SH.AH}{\sqrt{S{{H}^{2}}+H{{A}^{2}}}}=\frac{a\sqrt{3}}{4}\). Vậy \(d\left( SA;BC \right)=\frac{a\sqrt{3}}{4}.\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.