[LỜI GIẢI] Cho hàm số f( x )=x( x-1 )( x-2 )...( x-1000 ). Tính f'( 0 ) ? - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hàm số f( x )=x( x-1 )( x-2 )...( x-1000 ). Tính f'( 0 ) ?

Cho hàm số f( x )=x( x-1 )( x-2 )...( x-1000 ). Tính f'( 0 ) ?

Câu hỏi

Nhận biết

Cho hàm số \(f\left( x \right)=x\left( x-1 \right)\left( x-2 \right)...\left( x-1000 \right)\). Tính \(f'\left( 0 \right)\) ?


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

\(\begin{array}{l}f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 1000} \right) - 0}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 1000} \right) = \mathop {\lim }\limits_{x \to 0} \left( { - 1} \right)\left( { - 2} \right)\left( { - 3} \right)...\left( { - 1000} \right) = {\left( { - 1} \right)^{1000}}.1000! = 1000!\end{array}\)

Chọn B.

Ý kiến của bạn