[LỜI GIẢI] Cho tứ diện đều ABCD có cạnh bằng a. Tính khoảng cách giữa hai cạnh đường thẳng AB và CD. - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho tứ diện đều ABCD có cạnh bằng a. Tính khoảng cách giữa hai cạnh đường thẳng AB và CD.

Cho tứ diện đều ABCD có cạnh bằng a. Tính khoảng cách giữa hai cạnh đường thẳng AB và CD.

Câu hỏi

Nhận biết

Cho tứ diện đều \(ABCD\) có cạnh bằng \(a.\) Tính khoảng cách giữa hai cạnh đường thẳng \(AB\) và \(CD.\)


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Gọi \(M,\,I\) lần lượt là trung điểm của \(CD,\,AB.\) Khi đó do tứ diện \(ABCD\) là tứ diện đều nên \(\Delta ACD\) là tam giác đều.

Kéo theo \(AM \bot CD.\) Tương tự ta có \(BM \bot CD.\) Vì vậy \(CD \bot \left( {ABM} \right).\)

Do các tam giác \(\Delta ACD,\,\Delta BCD\) là các tam giác đều có cạnh chung \(CD\) và \(M\) là trung điểm \(CD\) nên \(AM = BM.\) Do đó \(\Delta ABM\) cân tại \(M.\) Vì vậy \(IM\) là trung tuyến đồng thời là đường cao. Suy ra \(IM \bot AB.\)

Lại có

\(\left\{ \begin{array}{l}MI \in \left( {ABM} \right)\\\left( {ABM} \right) \bot CD\end{array} \right. \Rightarrow MI \bot CD.\)

 Kết hợp điều này với \(MI \bot AB\) ta nhận được \(d\left( {AB,CD} \right) = MI.\)

Ta có \(MI = \sqrt {B{M^2} - B{I^2}}  = \sqrt {{{\left( {\dfrac{{a\sqrt 3 }}{2}} \right)}^2} - {{\left( {\dfrac{a}{2}} \right)}^2}}  = \dfrac{{a\sqrt 2 }}{2}.\)

Chọn C.

Ý kiến của bạn