Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng:
Giải chi tiết:
Số các chọn 4 đỉnh của đa giác trong 20 đỉnh của đa giác là: \({{n}_{\Omega }}=C_{20}^{4}=4845\) cách.
Gọi biến cố A: “Chọn được 4 đỉnh của đa giác được chọn là một hình chữ nhật”.
Ta có 20 đỉnh của đa giác nên có thể tạo được 10 đường kính của đường tròn từ 20 đỉnh đó.
Một hình chữ nhật có 4 đỉnh là đỉnh của đa giác được tạo bởi hai đường kính nói trên.
\(\Rightarrow \) Số cách chọn 4 đỉnh của đa giác tạo thành hình chữ nhật là: \({{n}_{A}}=C_{10}^{2}=45\) cách.
\(\Rightarrow P\left( A \right)=\frac{{{n}_{A}}}{{{n}_{\Omega }}}=\frac{45}{4845}=\frac{3}{323}.\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.