Với hai số thực dương a, b tùy ý và \(\frac{{{\log }_{3}}5.{{\log }_{5}}a}{1+{{\log }_{3}}2}-{{\log }_{6}}b=2\). Khẳng định nào dưới đây là khẳng định đúng?
Giải chi tiết:
\(\begin{array}{l}\frac{{{{\log }_3}5.{{\log }_5}a}}{{1 + {{\log }_3}2}} - {\log _6}b = 2 \Leftrightarrow \frac{{{{\log }_3}a}}{{{{\log }_3}6}} - {\log _6}b = 2 \Leftrightarrow {\log _6}a - {\log _6}b = 2\\ \Leftrightarrow {\log _6}a = {\log _6}b + {\log _6}36 \Leftrightarrow {\log _6}a = {\log _6}\left( {36b} \right) \Leftrightarrow a = 36b\end{array}\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.