Cho \({\log _2}7 = a,{\log _3}7 = b\) Khi đó \({\log _6}7\) bằng:
A. B. C. D.
Giải chi tiết:
Ta có:
\({\log _6}7 = \dfrac{1}{{{{\log }_7}6}} = \dfrac{1}{{{{\log }_7}\left( {2.3} \right)}} = \dfrac{1}{{{{\log }_7}2 + {{\log }_7}3}} = \dfrac{1}{{\dfrac{1}{{{{\log }_2}7}} + \dfrac{1}{{{{\log }_3}7}}}} = \frac{1}{{\dfrac{1}{a} + \dfrac{1}{b}}} = \dfrac{1}{{\dfrac{{a + b}}{{ab}}}} = \dfrac{{ab}}{{a + b}}\)
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.