Hàm số \(y={{\left| x \right|}^{3}}-{{x}^{2}}+4\) có tất cả bao nhiêu điểm cực trị ?
Giải chi tiết:

Ta có \(y = \left\{ \begin{array}{l}{x^3} - {x^2} + 4,\,\,\,x \ge 0\\ - {x^3} - {x^2} + 4,\,\,\,x < 0\end{array} \right..\)
\(\begin{array}{l} \Rightarrow y'\left( x \right) = \left\{ \begin{array}{l}3{x^2} - 2x,\,\,\,x \ge 0\\ - 3{x^2} - 2x,\,\,\,x < 0\end{array} \right..\\ \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{2}{3}\\x = - \frac{2}{3}\end{array} \right..\end{array}\)
Đồ thị hàm số có dạng như hình vẽ.
Ta thấy hàm số có 3 điểm cực trị.
Chọn đáp án C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.