Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh bằng \(4\pi \). Thể tích khối trụ là
Giải chi tiết:

\(ABB'A'\) là hình vuông \( \Rightarrow h = 2r\)
Diện tích xung quanh của hình trụ : \({S_{xq}} = 2\pi rh = 2\pi r.2r = 4\pi {r^2} = 4\pi \,\, \Rightarrow r = 1 \Rightarrow h = 2\)
Thể tích khối trụ: \(V = \pi {r^2}h = \pi {.1^2}.2 = 2\pi \).
Chọn: B
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.