Biến đổi \( \int \limits_0^3 {{x \over {1 + \sqrt {1 + x} }}dx} \) thành \( \int \limits_1^2 {f \left( t \right)dt} \) , với \(t = \sqrt {1 + x} \). Khi đó \(f \left( t \right) \) là hàm số nào trong các hàm số sau đây?
Giải chi tiết:
Đặt \(t = \sqrt {1 + x} \Leftrightarrow {t^2} = 1 + x \Leftrightarrow 2tdt = dx\) và \(x = {t^2} - 1\), đổi cận \(\left\{ \matrix{ x = 0 \Rightarrow t = 1 \hfill \cr x = 3 \Rightarrow t = 2 \hfill \cr} \right.\), khi đó ta có: \(I = \int\limits_1^2 {{{{t^2} - 1} \over {1 + t}}2tdt} = \int\limits_1^2 {2t\left( {t - 1} \right)dt} = \int\limits_1^2 {\left( {2{t^2} - 2t} \right)dt} \Rightarrow f\left( t \right) = 2{t^2} - 2t\).
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.