Tính tích phân \(I = \int \limits_0^2 {{x^2} \sqrt {{x^3} + 1} dx} \)
Giải chi tiết:
Đặt \(t = \sqrt {{x^3} + 1} \Leftrightarrow {t^2} = {x^3} + 1 \Leftrightarrow 2tdt = 3{x^2}dx \Leftrightarrow {x^2}dx = {2 \over 3}tdt\)
Đổi cận \(\left\{ \matrix{ x = 0 \Rightarrow t = 1 \hfill \cr x = 2 \Rightarrow t = 3 \hfill \cr} \right.\), khi đó ta có: \(I = \int\limits_1^3 {{{2{t^2}} \over 3}dt} = \left. {{2 \over 3}.{{{t^3}} \over 3}} \right|_1^3 = 6 - {2 \over 9} = {{52} \over 9}\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.