Giá trị nhỏ nhất của hàm số \(y = { \sin ^4}x - 2{ \cos ^2}x + 1 \) là:
Giải chi tiết:
\(\eqalign{ & y = {\sin ^4}x - 2{\cos ^2}x + 1 = {\left( {1 - {{\cos }^2}x} \right)^2} - 2{\cos ^2}x + 1 = {\cos ^4}x - 2{\cos ^2}x + 1 - 2{\cos ^2}x + 1 \cr & \,\,\,\, = {\cos ^4}x - 4{\cos ^2}x + 2 = {\left( {{{\cos }^2}x - 2} \right)^2} - 2 \cr} \)
Ta có:
\(\eqalign{ & - 1 \le \cos x \le 1 \Leftrightarrow 0 \le co{x^2}x \le 1 \cr & \Leftrightarrow - 2 \le {\cos ^2}x - 2 \le - 1 \Leftrightarrow 1 \le {\left( {{{\cos }^2}x - 2} \right)^2} \le 4 \Leftrightarrow - 1 \le {\left( {{{\cos }^2}x - 2} \right)^2} - 2 \le 2 \cr} \)
Vậy \(\min y = - 1\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.