[LỜI GIẢI] Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc

Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc

Câu hỏi

Nhận biết

Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc vuông và cạnh huyền bằng hằng số \(a \left( {a > 0} \right). \)


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Gọi số đo cạnh góc vuông \(AB\) là \(x,0 < x < \dfrac{a}{2}\) (vì \(AB + AC = a,AB < AC\))

Khi đó, cạnh huyền \(BC = a-x\), cạnh góc vuông còn lại là: \(AC = \sqrt {B{C^2} - A{B^2}}  = \sqrt {{{(a - x)}^2} - {x^2}} \)

Hay \(AC = \sqrt {{a^2} - 2ax} \)

Diện tích tam giác \(ABC\) là: \(S(x) = \dfrac{1}{2}x\sqrt {{a^2} - 2ax} \)

\(S'(x) = \dfrac{1}{2}\sqrt {{a^2} - 2ax}  - \dfrac{1}{2}\dfrac{{ax}}{{\sqrt {{a^2} - 2ax} }}\)\( = \dfrac{{a(a - 3x)}}{{2\sqrt {{a^2} - 2ax} }}\)

\(S'(x) = 0 \Leftrightarrow x = \dfrac{a}{3}\)

Bảng biến thiên:

Tam giác có diện tích lớn nhất khi \(AB = \dfrac{a}{3};BC = \dfrac{{2a}}{3}\).

Ý kiến của bạn