[LỜI GIẢI] Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a.  Tam giác SAB - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a.  Tam giác SAB

Câu hỏi

Nhận biết

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh bằng \(2a.\) Tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với mặt đáy. Biết thể tích khối chóp \(S.ABCD\) bằng \(\dfrac{{4{a^3}}}{3}\) . Gọi \(\alpha \) là góc giữa \(SC\) và mặt đáy, tính \(\tan \alpha .\)


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Gọi \(H\) là trung điểm của \(AB \Rightarrow SH \bot AB\) (do \(\Delta SAB\) cân tại \(S\))

Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SH \bot AB;\,\,\,SH \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\)

Hay \(H\) là hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right) \Rightarrow CH\) là hình chiều của .. lên mặt phẳng \(\left( {ABCD} \right)\)

Do đó góc giữa \(SC\) và mặt đáy là góc \(SCH.\)

Ta có \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} \Leftrightarrow \dfrac{{4{a^3}}}{3} = \dfrac{1}{3}SH.4{a^2} \Leftrightarrow SH = a\).

Xét tam giác \(BHC\) vuông tại \(B\), theo định lý Pytago ta có \(HC = \sqrt {B{H^2} + B{C^2}}  = \sqrt {{a^2} + {{\left( {2a} \right)}^2}}  = a\sqrt 5 \)

Xét tam giác \(SHC\) vuông tại \(H\) có \(\tan \angle SCH = \dfrac{{SH}}{{HC}} = \dfrac{a}{{a\sqrt 5 }} = \dfrac{{\sqrt 5 }}{5}\).

Chọn D.

Ý kiến của bạn