Cho hàm số \(y = {x^4} - 2{x^2} + m - 2 \) có đồ thị \( \left( C \right) \). Gọi \(S \) là tập các giá trị của \(m \) sao cho đồ thị \( \left( C \right) \) có đúng một tiếp tuyến song song với trục \(Ox. \) Tổng tất cả các phần tử của \(S \) là
Giải chi tiết:
Ta có \(y' = 4{x^3} - 4x = 0 \Leftrightarrow 4x\left( {{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 1\end{array} \right.\)
Lại có \(y'' = 12{x^2} - 4 \Rightarrow y''\left( 0 \right) = - 4 < 0;\,y''\left( 1 \right) = y''\left( { - 1} \right) = 8 > 0\) nên \(x = 0\) là điểm cực đại của hàm số và \(x = 1;x = - 1\) là các điểm cực tiểu của hàm số.
Nhận thấy rằng đây là hàm trùng phương nên hai điểm cực tiểu sẽ đối xứng nhau qua \(Oy.\)
Từ đó để tiếp tuyến của đồ thị song song với trục \(Ox\) thì tiếp điểm là điểm cực trị của đồ thị hàm số.
Do đó để có đúng 1 tiếp tuyến song song với trục \(Ox\) thì điểm cực đại hoặc cực tiểu phải nằm trên trục \(Ox.\)
Hay \(\left[ \begin{array}{l}y\left( 0 \right) = 0\\y\left( { \pm 1} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m - 2 = 0\\m - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 2\\m = 3\end{array} \right.\)
Vậy \(S = \left\{ {2;3} \right\} \Rightarrow \) tổng các phần tử của \(S\) là \(2 + 3 = 5.\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.