Tính chu vi C của tam giác đều ABC ngoại tiếp đường tròn có bán kính bằng \(\sqrt 3 cm.\)
Giải chi tiết:
Gọi O là tâm đường tròn nội tiếp tam giác đều \(ABC.\)
Khi đó O cũng là trọng tâm tam giác ABC.
\( \Rightarrow OH = \frac{1}{3}BH\) (tính chất đường trung tuyến trong tam giác).
\( \Rightarrow BH = 3OH = 3r = 3\sqrt 3 cm.\)
Áp dụng định lý Pi-ta-go đối với tam giác vuông \(BHC\) vuông tại \(H\) ta có:
\(\begin{array}{l}\;\;\;\;B{C^2} = B{H^2} + H{C^2}\\ \Leftrightarrow B{C^2} = B{H^2} + {\left( {\frac{{BC}}{2}} \right)^2}\\ \Leftrightarrow \frac{3}{4}B{C^2} = {\left( {3\sqrt 3 } \right)^2}\\ \Leftrightarrow B{C^2} = 36\\ \Leftrightarrow BC = 6.\end{array}\)
Chu vi tam giác đều \(ABC\) là: \(C = 3.BC = 3.6 = 18\;cm.\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.