Gọi n là số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y= \frac{x+1}{{{x}^{2}}-4x+3} \). Tìm n ?
Giải chi tiết:
Dễ thấy đồ thị hàm số có 1 đường TCN là \(y=0\) và 2 đường TCĐ là \(x=1;x=3\)
Vậy \(n=3\).
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.