Tìm tất cả các giá trị thực của tham số \(a \) để hàm số \(y=2{{x}^{3}}+9a{{x}^{2}}+12{{a}^{2}}x+1 \) có cực đại, cực tiểu và hoành độ điểm cực tiểu của đồ thị hàm số bằng \(1. \)
Giải chi tiết:
Ta có \(y=2{{x}^{3}}+9a{{x}^{2}}+12{{a}^{2}}x+1\,\,\xrightarrow{{}}\,\,{y}'=6{{x}^{2}}+18ax+12{{a}^{2}};\,\,{y}''=12x+18a.\)
Để hàm số đạt cực tiểu tại \(x = 1 \Leftrightarrow \left\{ \begin{array}{l}y'\left( 1 \right) = 0\\y''\left( 1 \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}12{a^2} + 18a + 6 = 0\\18a + 12 > 0\end{array} \right. \Leftrightarrow a = - \frac{1}{2}.\)
Chọn B
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.