Tìm các hàm số \(f\left( x \right)\) biết rằng \(f'\left( x \right) = \dfrac{{{\rm{cos}}\,x}}{{{{\left( {2 + \sin \,x} \right)}^2}}}\).
Giải chi tiết:
\(f'\left( x \right) = \dfrac{{{\rm{cos}}\,x}}{{{{\left( {2 + \sin \,x} \right)}^2}}} \Rightarrow f\left( x \right) = \int {\dfrac{{{\rm{cos}}\,x}}{{{{\left( {2 + \sin \,x} \right)}^2}}}} \,dx\)
Đặt \(u = 2 + \sin \,x \Rightarrow du = {\rm{cos}}\,xdx\)
\( \Rightarrow \int {\dfrac{{{\rm{cos}}\,x}}{{{{\left( {2 + \sin \,x} \right)}^2}}}} \,dx = \int {\dfrac{{du}}{{{u^2}}}} = - \dfrac{1}{u} + C = - \dfrac{1}{{2 + \sin \,x}} + C\)
\( \Rightarrow f\left( x \right) = - \dfrac{1}{{2 + \sin \,x}} + C\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.