Cho hình nón có thiết diện qua trục là một tam giác vuông có cạnh huyền bằng \(2a\), thể tích của khối nón được tạo thành bởi hình nón đã cho bằng
Giải chi tiết:

Xét thiết diện qua trục là tam giác SAB (như hình vẽ):
Tam giác SAB vuông cân tại S có cạnh huyền bằng \(2a\) nên \(AB = 2a \Rightarrow SO = OA = OB = a\) (trung tuyến ứng với cạnh huyền trong tam giác vuông thì bằng nửa cạnh huyền).
\( \Rightarrow r = h = a\)
\( \Rightarrow V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {a^2}.a = \)\(\dfrac{{\pi {a^3}}}{3}\).
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.