Tìm hệ số của số hạng chứa \({x^7}\) trong khai triển nhị thức \({\left( {x + \dfrac{1}{x}} \right)^{13}}\).
Giải chi tiết:
\({\left( {x + \dfrac{1}{x}} \right)^{13}} = \sum\limits_{i = 0}^{13} {C_{13}^i{x^i}.{{\left( {\dfrac{1}{x}} \right)}^{13 - i}}} = \sum\limits_{i = 0}^{13} {C_{13}^i{x^i}.{x^{ - \left( {13 - i} \right)}}} = \sum\limits_{i = 0}^{13} {C_{13}^i{x^{2i - 13}}} \)
Số hạng chứa \({x^7}\) trong khai triểnứng với \(i\) thỏa mãn \(2i - 13 = 7 \Leftrightarrow i = 10\)
Vậy hệ số của số hạng chứa \({x^7}\) là: \(C_{13}^{10} = 286\).
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.