Cho hình chóp S.ABC có SC=
, đáy ABC là tam giác vuông tại A, AB = 2a , AC= a và hình chiếu của S lên mặt phẳng (ABC) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng BC và SA.
Giải chi tiết:

Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.