[LỜI GIẢI] Trong tất cả các hình chóp tứ giác đều nội tiếp mặt cầu có bán kính bằng 9. Khối chóp có thể tích V - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong tất cả các hình chóp tứ giác đều nội tiếp mặt cầu có bán kính bằng 9. Khối chóp có thể tích V

Trong tất cả các hình chóp tứ giác đều nội tiếp mặt cầu có bán kính bằng 9. Khối chóp có thể tích V

Câu hỏi

Nhận biết

Trong tất cả các hình chóp tứ giác đều nội tiếp mặt cầu có bán kính bằng 9. Khối chóp có thể tích V lớn nhất bằng:


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Giả sử khối chóp đó là S.ABCD. Ta có hình vẽ bên:

Ta có: \(R = \dfrac{{S{A^2}}}{{2.SH}} = 9 \Rightarrow \dfrac{{S{H^2} + A{H^2}}}{{SH}} = 18 \Leftrightarrow A{H^2} = 18.SH - S{H^2}\)

Mặt khác: \({V_{S.ABCD}} = \dfrac{1}{3}.SH.{S_{ABCD}} = \dfrac{1}{3}.SH.\dfrac{{A{C^2}}}{2} = \dfrac{2}{3}.SH.A{H^2} = \dfrac{2}{3}.SH.\left( {18.SH - S{H^2}} \right)\)

Xét hàm số

\(f\left( t \right) = \dfrac{2}{3}{t^2}\left( {18 - t} \right) = \dfrac{8}{3}.\left( {\dfrac{t}{2}.\dfrac{t}{2}.\left( {18 - t} \right)} \right) \le \dfrac{8}{3}{\left( {\dfrac{{t + 18 - t}}{3}} \right)^3} = 576\,\,\left( {0 < t < 18} \right)\)

Dấu “=” xảy ra khi và chỉ khi \(\dfrac{t}{2} = 18 - t \Leftrightarrow t = 12\)

Suy ra, thể tích khối chóp S.ABCD đạt giá trị lớn nhất là 576 khi và chỉ khi \(SH = 12\).

Chọn D.

Ý kiến của bạn