Cho hình chóp \(SABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a\sqrt 2 \); \(BC = a\) và \(SA = SB = SC = SD = 2a\). Gọi \(K\) là hình chiếu vuông góc của \(B\) trên \(AC\), \(H\) là hình chiếu vuông góc của \(K\) trên \(SA\). Tính cosin góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {BKH} \right)\).\(\)\(\)
Giải chi tiết:

Gọi \(O = AC \cap BD\).
Hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật (tâm \(O\)), \(SA = SB = SC = SD\)\( \Rightarrow SO \bot \left( {ABCD} \right).\)
Ta có: \(\left\{ \begin{array}{l}BK \bot AC\\BK \bot SO\end{array} \right. \Rightarrow BK \bot \left( {SAC} \right) \Rightarrow BK \bot SA\).
Mà \(SA \bot HK\,\,\left( {gt} \right) \Rightarrow SA \bot \left( {BHK} \right)\).
\( \Rightarrow SH \bot \left( {BHK} \right)\) \( \Rightarrow HB\) là hình chiếu của \(SB\) lên \(\left( {BHK} \right)\).
\( \Rightarrow \angle \left( {SB;\left( {BHK} \right)} \right) = \angle \left( {SB;HB} \right) = \angle SBH\).
Xét tam giác \(SAB\) có: \({\rm{cos}}\angle ASB = \dfrac{{S{A^2} + S{B^2} - AB}}{{2.SA.SB}} = \dfrac{{4{{\rm{a}}^2} + 4{{\rm{a}}^2} - 2{{\rm{a}}^2}}}{{2.2{\rm{a}}.2{\rm{a}}}} = \dfrac{3}{4}\)
\( \Rightarrow \sin \angle ASB = \dfrac{{\sqrt 7 }}{4} \Rightarrow \cos \angle SBH = \dfrac{{\sqrt 7 }}{4}\) (Do \(\angle ASB < {90^0}\)).
Chọn: A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.