Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Hàm số \(y = f\left( {{x^2} - 2x} \right)\) có bao nhiêu điểm cực trị?

Giải chi tiết:
Đặt \(y = g\left( x \right) = f\left( {{x^2} - 2x} \right)\)\( \Rightarrow g'\left( x \right) = \left( {2x - 2} \right)f'\left( {{x^2} - 2x} \right).\)
\(\begin{array}{l}y' = 0 \Leftrightarrow \left( {2x - 2} \right)f'\left( {{x^2} - 2x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}2x - 2 = 0\\{x^2} - 2x = - 1\\{x^2} - 2x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\end{array}\)
Trong đó \(x = 1\) là nghiệm bội 3, hai nghiệm còn lại là nghiệm đơn.
Vậy hàm số đã cho có 3 điểm cực trị.
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.