Trong không gian với hệ tọa độ \(Oxyz\), cho \(S\left( {4;2;2} \right)\) và các điểm \(A,\,\,B,\,\,C\) lần lượt thuộc các trục \(Ox\), \(Oy\), \(Oz\) sao cho hình chóp \(S.ABC\) có các cạnh \(SA,\,\,SB,\,\,SC\) đôi một vuông góc. Tính thể tích khối chóp \(S.ABC\).
Giải chi tiết:
Gọi \(A\left( {a;0;0} \right) \in Ox\), \(B\left( {0;b;0} \right) \in Oy\), \(C\left( {0;0;c} \right) \in Oz\).
Ta có: \(\overrightarrow {SA} = \left( {a - 4; - 2; - 2} \right)\), \(\overrightarrow {SB} = \left( { - 4;b - 2; - 2} \right)\), \(\overrightarrow {SC} = \left( { - 4; - 2;c - 2} \right)\).
\(\left\{ \begin{array}{l}\overrightarrow {SA} .\overrightarrow {SB} = 0\\\overrightarrow {SB} .\overrightarrow {SC} = 0\\\overrightarrow {SA} .\overrightarrow {SC} = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - 4\left( {a - 4} \right) - 2\left( {b - 2} \right) + 4 = 0\\16 - 2\left( {b - 2} \right) - 2\left( {c - 2} \right) = 0\\ - 4\left( {a - 4} \right) + 4 - 2\left( {c - 2} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 4a - 2b + 24 = 0\\ - 2b - 2c + 24 = 0\\ - 4a - 2c + 24 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 6\\c = 6\end{array} \right.\).
\( \Rightarrow A\left( {3;0;0} \right);\,\,B\left( {0;6;0} \right);\,\,C\left( {0;0;6} \right)\)
\(\begin{array}{l} \Rightarrow SA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} = 3\\\,\,\,\,\,\,SB = \sqrt {{{\left( { - 4} \right)}^2} + {4^2} + {{\left( { - 2} \right)}^2}} = 6\\\,\,\,\,\,\,SC = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( { - 2} \right)}^2} + {4^2}} = 6\end{array}\)
Vậy \({V_{S.ABC}} = \dfrac{1}{6}SA.SB.SC = \dfrac{1}{6}.3.6.6 = 18\).
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.