[LỜI GIẢI] Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a cạnh bên bằng 3a. Tính thể tích V của khối chóp - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a cạnh bên bằng 3a. Tính thể tích V của khối chóp

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a cạnh bên bằng 3a. Tính thể tích V của khối chóp

Câu hỏi

Nhận biết

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(2a\), cạnh bên bằng \(3a\). Tính thể tích \(V\) của khối chóp đã cho.


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:


Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).

Khi đó ta có \(AO = \dfrac{{AC}}{2} = \dfrac{{2a\sqrt 2 }}{2} = a\sqrt 2 \)

Xét tam giác \(SAO\) vuông tại \(O\) có \(AO = a\sqrt 2 ;\,\,\,SA = 3a.\)

Áp dụng định lí Pytago ta có: \(SO = \sqrt {S{A^2} - A{O^2}} \)\( = \sqrt {{{\left( {3a} \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}} \) \( = a\sqrt 7 \).

Diện tích hình vuông \(ABCD\) là \({S_{ABCD}} = {\left( {2a} \right)^2} = 4{a^2}\).

Vậy \({V_{S.ABCD}} = \dfrac{1}{3}.SO.{S_{ABCD}} = \dfrac{1}{3}.a\sqrt 7 .4{a^2} = \dfrac{{4\sqrt 7 {a^3}}}{3}.\)

Chọn D.

Thảo luận về bài viết (1)

  1. hương

    cho mình hỏi là tại sao lại là (2a căn 2)/2 vậy ?

Ý kiến của bạn