[LỜI GIẢI] Cho hàm số f( x ) có đạo hàm trên R và có đồ thị hàm số y = f'( x ) như hình vẽ. Xét hàm số g( x ) = - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hàm số f( x ) có đạo hàm trên R và có đồ thị hàm số y = f'( x ) như hình vẽ. Xét hàm số g( x ) =

Cho hàm số f( x ) có đạo hàm trên R và có đồ thị hàm số y = f'( x ) như hình vẽ. Xét hàm số g( x ) =

Câu hỏi

Nhận biết

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Xét hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right)\). Khẳng định nào dưới đây sai ?


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

TXĐ : \(D = \mathbb{R}\)

Ta có :

\(g\left( x \right) = f\left( {{x^2} - 2} \right)\)

\( \Rightarrow g'\left( x \right) = \left( {{x^2} - 2} \right)'.f'\left( {{x^2} - 2} \right) = 2x.f'\left( {{x^2} - 2} \right)\)

Từ đồ thị hàm số \(y = f'\left( x \right)\) ta có :

\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\f'\left( {{x^2} - 2} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 2 = - 1\\{x^2} - 2 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\\x = \pm 2\end{array} \right.\)

Hàm số \(y = f'\left( x \right)\) có \(f'\left( x \right) = 0\) khi \(x = - 1\) nhưng không đổi dấu khi đi qua điểm \(x = - 1\) nên ta có :

Dấu của \(g'\left( x \right)\) như sau :

Suy ra \(g\left( x \right)\) đồng biến trên các khoảng \(\left( { - 2;0} \right)\) và \(\left( {2; + \infty } \right)\) còn nghịch biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0;2} \right)\). Do đó khẳng định sai là A

Chọn A.

Ý kiến của bạn