[LỜI GIẢI] Tính thể tích của khối lập phương ABCD.A'B'C'D' biết AC' = a căn 6 - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tính thể tích của khối lập phương ABCD.A'B'C'D' biết AC' = a căn 6

Tính thể tích của khối lập phương ABCD.A'B'C'D' biết AC' = a căn 6

Câu hỏi

Nhận biết

Tính thể tích của khối lập phương \(ABCD.A'B'C'D'\), biết \(AC' = a\sqrt 6 \)


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

\(ABCD.A'B'C'D'\) là hình lập phương nên \(\left\{ \begin{array}{l}CC' \bot \left( {ABCD} \right)\\CB \bot CD\\CB = CD = CC'\end{array} \right.\)

Ta có:

\(\begin{array}{l}AC' = a\sqrt 6 \Leftrightarrow AC{'^2} = 6{a^2}\\ \Leftrightarrow CC{'^2} + A{C^2} = 6{a^2}\\ \Leftrightarrow CC{'^2} + C{B^2} + C{D^2} = 6{a^2}\\ \Leftrightarrow 3C{B^2} = 6{a^2} \Rightarrow CB = \sqrt 2 a\end{array}\)

Hình lập phương đã cho có cạnh bằng \(a\sqrt 2 \) nên có thể tích là: \(V = {\left( {\sqrt 2 a} \right)^3} = 2\sqrt 2 {a^3}\)

Chọn D.

Ý kiến của bạn