Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.

Khẳng định nào sau đây đúng?
Giải chi tiết:
Dựa vào BBT ta thấy:
Hàm số có giá trị cực tiểu bằng \( - 1\), đạt tại \(x = 1\). Do đó đáp án A đúng, đáp án C sai.
Hàm số có \({x_{CT}} = 1,\,\,{x_{CD}} = 0\) nên đáp án D sai.
Do \(\mathop {\lim }\limits_{x \to - \infty } y = - \infty \) nên đáp án B sai.
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.