Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Phương trình \(f\left( x \right) = 2\) có bao nhiêu nghiệm thực?
Giải chi tiết:
Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\) song song với trục hoành.
Dựa vào đồ thị hàm số ta thấy đường thẳng \(y = 2\) cắt đồ thị hàm số tại \(3\) điểm phân biệt.

Vậy phương trình \(f\left( x \right) = 2\) có 3 nghiệm phân biệt.
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.