Giá trị lớn nhất của hàm số \(f\left( x \right) = {x^3} - 3x + 2\) trên đoạn \(\left[ { - 3;\,\,3} \right]\) bằng:
Giải chi tiết:
Ta có: \(f'\left( x \right) = 3{x^2} - 3\)
\( \Rightarrow f'\left( x \right) = 0 \Leftrightarrow 3{x^2} - 3 = 0 \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right..\)
Ta có: \(f\left( { - 3} \right) = - 16;\,\,\,f\left( { - 1} \right) = 4;\,\,f\left( 1 \right) = 0;\,\,\,f\left( 3 \right) = 20.\)
\( \Rightarrow \mathop {\max }\limits_{\left[ { - 3;\,\,3} \right]} f\left( x \right) = f\left( 3 \right) = 20.\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.