Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\) và \(AA' = \sqrt 2 a\) (minh họa như hình vẽ bên). Thể tích của khối lăng trụ đã cho bằng

Giải chi tiết:
Tam giác \(ABC\) đều cạnh \(a \Rightarrow {S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\).
Vậy \({V_{ABC.A'B'C'}} = AA'.{S_{\Delta ABC}} = \sqrt 2 a.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 6 }}{4}\).
Chọn A
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.