Trong không gian \(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):\,\,{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 16\) và \(\left( {{S_2}} \right):\,\,{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9\) cắt nhau theo giao tuyến là một đường tròn là \(I\left( {a;b;c} \right)\). Tính \(a + b + c\).
Giải chi tiết:
Phương trình mặt phẳng giao tuyến của 2 mặt cầu là
\(\begin{array}{l}{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} - {\left( {x + 1} \right)^2} - {\left( {y - 2} \right)^2} - {\left( {z + 1} \right)^2} = 16 - 9\\ \Leftrightarrow - 2x + 1 - 2y + 1 - 4z + 4 - 2x - 1 + 4y - 4 - 2z - 1 = 7\\ \Leftrightarrow - 4x + 2y - 6z - 7 = 0 \Leftrightarrow 4x - 2y + 6z + 7 = 0\,\,\left( P \right)\end{array}\)
Mặt cầu \(\left( {{S_1}} \right)\) có tâm \({I_1}\left( {1;1;2} \right)\), bán kính \({R_1} = 4\).
Gọi \(\Delta \) là đường thẳng đi qua \({I_1}\) và vuông góc với \(\left( P \right) \Rightarrow \Delta :\,\,\dfrac{{x - 1}}{4} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z - 2}}{6}\).
Gọi \(I = \left( P \right) \cap \Delta \Rightarrow I\left( {1 + 4t;1 - 2t;2 + 6t} \right)\).
\(I \in \left( P \right) \Rightarrow 4\left( {1 + 4t} \right) - 2\left( {1 - 2t} \right) + 6\left( {2 + 6t} \right) + 7 = 0 \Leftrightarrow 56t + 21 = 0 \Leftrightarrow t = - \dfrac{3}{8}\).
\( \Rightarrow I\left( { - \dfrac{1}{2};\dfrac{7}{4}; - \dfrac{1}{4}} \right) \Rightarrow a + b + c = - \dfrac{1}{2} + \dfrac{7}{4} - \dfrac{1}{4} = 1\).
Chọn D
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.