Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {1;a;1} \right)\) và mặt cầu \(\left( S \right)\) có phương trình \({x^2} + {y^2} + {z^2} - 2y + 4z - 9 = 0\). Tập các giá trị của \(a\) để điểm \(A\) nằm trong khối cầu là
Giải chi tiết:
Mặt cầu \(\left( S \right):\) \({x^2} + {y^2} + {z^2} - 2y + 4z - 9 = 0\) có tâm \(I\left( {0;1; - 2} \right)\) và bán kính \(R = \sqrt {{0^2} + {1^2} + {{\left( { - 2} \right)}^2} - \left( { - 9} \right)} = \sqrt {14} \)
Để \(A\) nằm trong khối cầu thì \(IA < R \Leftrightarrow I{A^2} < {R^2} \Leftrightarrow {1^2} + {\left( {a - 1} \right)^2} + {3^2} < 14\)
\( \Leftrightarrow {\left( {a - 1} \right)^2} < 4 \Leftrightarrow - 2 < a - 1 < 2 \Leftrightarrow - 1 < a < 3.\)
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.