[LỜI GIẢI] Trong không gian với hệ tọa độ Oxyz phương trình nào dưới đây là phương trình của một mặt cầu? - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong không gian với hệ tọa độ Oxyz phương trình nào dưới đây là phương trình của một mặt cầu?

Trong không gian với hệ tọa độ Oxyz phương trình nào dưới đây là phương trình của một mặt cầu?

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của một mặt cầu?


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

+) \({x^2} + {y^2} - 2x + 4y - 1 = 0\), \({x^2} + {z^2} - 2x + 6z - 2 = 0\) không phải phương trình của một mặt cầu

+) \({x^2} + {y^2} + {z^2} - 2x + 4y + 3z + 7 = 0\) có : \({a^2} + {b^2} + {c^2} - d = {1^2} + {2^2} + {\left( {\dfrac{3}{2}} \right)^2} - 7 = \dfrac{1}{4} > 0\)

\( \Rightarrow \)\({x^2} + {y^2} + {z^2} - 2x + 4y + 3z + 7 = 0\) có là phương trình mặt cầu.

+) \({x^2} + {y^2} + {z^2} - 2x + 4y + 3z + 8 = 0\) có : \({a^2} + {b^2} + {c^2} - d = {1^2} + {2^2} + {\left( {\dfrac{3}{2}} \right)^2} - 8 =  - \dfrac{3}{4} < 0\)

\( \Rightarrow \)\({x^2} + {y^2} + {z^2} - 2x + 4y + 3z + 8 = 0\) không phải là phương trình mặt cầu.

Chọn: A

Ý kiến của bạn