Cho cấp số cộng \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = - 6\) và công sai \(d = 4\). Tính tổng \(S\) của 14 số hạng đầu tiên của cấp số cộng đó.
Giải chi tiết:
Ta có: \({S_{14}} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2} = \frac{{14\left[ {2.\left( { - 6} \right) + 13.4} \right]}}{2} = 280.\)
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.