Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x - 2} \right)\) . Tìm khoảng nghịch biến của đồ thị hàm số \(y = f\left( x \right)\)
Giải chi tiết:
Hàm số nghịch biến \( \Leftrightarrow f'\left( x \right) \le 0 \Leftrightarrow x{\left( {x - 1} \right)^2}\left( {x - 2} \right) \le 0 \Leftrightarrow x\left( {x - 2} \right) \le 0 \Leftrightarrow 0 \le x \le 2.\)
Dựa vào các đáp án ta thấy chỉ có đáp án C thỏa mãn.
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.