Tính đạo hàm của hàm số \(y = \ln \left( {{x^2} + x + 1} \right)\).
Giải chi tiết:
Ta có \(y = \ln \left( {{x^2} + x + 1} \right) \Rightarrow y' = \dfrac{{{{\left( {{x^2} + x + 1} \right)}^\prime }}}{{{x^2} + x + 1}} = \dfrac{{2x + 1}}{{{x^2} + x + 1}}\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.