Cho hàm số \(y = f\left( x \right)\)liên tục trên R và có đạo hàm được xác định hàm số bởi hàm số \(f'\left( x \right) = {x^2}{\left( {x - 1} \right)^3}\left( {x + 3} \right)\). Hỏi đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) có bao nhiêu điểm cực trị?
Giải chi tiết:
\(f'\left( x \right) = {x^2}{\left( {x - 1} \right)^3}\left( {x + 3} \right) \Rightarrow \) Hàm số \(y = f\left( x \right)\) đạt cực trị tại 2 điểm là \(x = 1,\,\,x = - 3\)
Đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) được dựng dựa vào đồ thị hàm số \(y = f\left( x \right)\) bằng cách: Giữ nguyên phần đồ thị nằm bên phải trục tung, lấy đối xứng phần đồ thị bên phải trục tung, qua trục tung. Do đó, hàm số \(y = f\left( {\left| x \right|} \right)\) đạt cực trị tại các điểm: \(x = \pm 1,\,\,x = 0\).
Chọn: B
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.