Có bao nhiêu số tự nhiên có ba chữ số dạng \(\overline {abc} \) với \(a,b,c \in \left\{ {0,1,2,3,4,5,6} \right\}\) sao cho \(a < b < c\) .
Giải chi tiết:
\(a \ne 0,\,\,a < b < c \Rightarrow b,c \ne 0\).
Chọn 3 số từ bộ số \(\left\{ {1;2;3;4;5;6} \right\}\) có \(C_6^3 = 20\) cách.
Với mỗi bộ 3 số chọn được, do \(a < b < c\) nên chỉ có 1 cách sắp xếp duy nhất.
Vậy có tất cả 20 số thỏa mãn yêu cầu bài toán.
Chọn đáp án D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.