Cho hàm số \(y = \frac{{{x^2} - 3x + 3}}{{x - 1}}\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ { - 1;\frac{1}{2}} \right]\). Tính tích M.m.
Giải chi tiết:
TXĐ: \(D = R{\rm{\backslash }}\left\{ 1 \right\}\)
\(y = \frac{{{x^2} - 3x + 3}}{{x - 1}} \Rightarrow y' = \frac{{\left( {2x - 3} \right)\left( {x - 1} \right) - 1.\left( {{x^2} - 3x + 3} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)
Bảng biến thiên trên đoạn \(\left[ { - 1;\frac{1}{2}} \right]\):

Giá trị nhỏ nhất \(m = - \frac{7}{2}\), giá trị lớn nhất \(M = - 3\) \( \Rightarrow M.m = \frac{{21}}{2}\).
Chọn: C
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.