Hàm số \(y = a{x^3} + b{x^2} + cx + d\) đạt cực trị tại \({x_1};\,\,{x_2}\) nằm hai về hai phía của trục tung khi và chỉ khi:
Cách giải nhanh bài tập này
Ta có: \(y' = 3a{x^2} + 2bx + c\)\( \Rightarrow y' = 0 \Leftrightarrow 3a{x^2} + 2bx + c = 0\) (*)
Hàm số có hai điểm cực trị nằm về hai phía của trục tung \( \Leftrightarrow \) pt (*) có hai nghiệm trái dấu \( \Leftrightarrow \) a và c trái dấu.
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.